Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential.
نویسندگان
چکیده
The surface chemistry of biomaterials can have a significant impact on their performance in biological applications. Our recent work suggests that cerium oxide nanoparticles are potent antioxidants in cell culture models and we have evaluated several therapeutic applications of these nanoparticles in different biological systems. Knowledge of protein adsorption and cellular uptake will be very useful in improving the beneficial effects of cerium oxide nanoparticles in biology. In the present study, we determined the effect of zeta potential of cerium oxide nanoparticles on adsorption of bovine serum albumin (BSA) and cellular uptake in adenocarcinoma lung cells (A549). The zeta potential of the nanoparticles was varied by dispersing them in various acidic and basic pH solutions. UV-visible spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS) were used for the protein adsorption and cellular uptake studies, respectively. Nanoceria samples having positive zeta potential were found to adsorb more BSA while the samples with negative zeta potential showed little or no protein adsorption. The cellular uptake studies showed preferential uptake for the negatively charged nanoparticles. These results demonstrate that electrostatic interactions can play an important factor in protein adsorption and cellular uptake of nanoparticles.
منابع مشابه
Adsorption of Bovine Serum Albumin on CeO2
Abstract—Preparation of nanoparticles of cerium oxide and adsorption of bovine serum albumin on them were studied. Particle size distribution and influence of pH on zeta potential of prepared CeO2 were determined. Average size of prepared cerium oxide nanoparticles was 9 nm. The simultaneous measurements of the bovine serum albumin adsorption and zeta potential determination of the (adsorption)...
متن کاملProtonated nanoparticle surface governing ligand tethering and cellular targeting.
Nanoparticles have shown tremendous potential for effective drug delivery due to their tiny size and cell membrane penetration capabilities. Cellular targeting with nanoparticles is often achieved by surface modifications followed by ligand conjugation. However, the efficiency of the nanoparticles reaching the target cells and getting internalized depends on the stability of targeting ligands a...
متن کاملEfficient Removal of Methylene Blue from Aqueous Solution by Adsorption on Cerium Vanadate Nanoparticles
Cerium vanadate nanoparticles (CVNPs) were used as a solid phase adsorbent for removing methylene blue (MB) from aqueous media. The nanoparticles were obtained through a direct precipitation procedure in aqueous solutions, and were characterized by X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). The results proved the product to comprise 25-45 nm particles. Bat...
متن کاملThe effects of Cerium oxide nanoparticles on the rat model of rheumatoid arthritis
Background & aim: The previous document indicated that Cerium oxide nanoparticles (CeO2-NPs), possess an astonishing pharmacological potential due to their antioxidant and anti-inflammatory properties. This study was designed to evaluate the effects of CeO2-NPs on the rheumatoid arthritis (RA) induced by Complete Freund's adjuvant in Wistar Rats. Methods: Forty male Wistar rats were divided int...
متن کاملEfficient Removal of Methylene Blue from Aqueous Solution by Adsorption on Cerium Vanadate Nanoparticles
Cerium vanadate nanoparticles (CVNPs) were used as a solid phase adsorbent for removing methylene blue (MB) from aqueous media. The nanoparticles were obtained through a direct precipitation procedure in aqueous solutions, and were characterized by X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). The results proved the product to comprise 25-45 nm particles. Bat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 28 31 شماره
صفحات -
تاریخ انتشار 2007